Folding and faulting along the San Andreas fault, Palmdale, Implications for simple shear mechanics and education of th

Lowell Kessel

Arthur Sylvester

Lowell Kessel
University of California Santa Barbara

Arthur Sylvester
University of California Santa Barbara

October 1, 1998

Introduction

The hwy 14 road cut in Palmdale, California, is the location of shallow subsurface exposures of the San Andreas fault zone and its re along its entire 1000 km length. The fault zone is 1.6 km (1 mi.) wic (Barrows, 1987) and consists of a set of faults that parallels the Si Approximately 3 km to the east, the $S A F$ zone, spans a width of 3.2 km 1987) and commonly spans a width of several kilometers along its ext The Palmdale roadcut, about 27 m high maldragoutxposes complexly folded and faulted, middle Pliocene, gypsiferous lacustrine rocks kns Formation (Wallace, 1949). The Mojave segment of the SAF, along whicl recent rupture in 1857 occurred, crosses the highway at the southern The roadcut is aligned nearly perpendicular to the strike of the fau: considered to be a large "trench." At the north end of the cut and pi the Little Rock fault which has had more than 20 km (Barrows 1987) o: strike slip. The Little Rock fault lasartatd earoded but(250 ft) north o the northern end ofcthe (smadh, 1976). The "trench" allows a close lor shallow subsurface structure and deformation possibly related to the: faults.

The San Andreas fault is one of the longest and best-known cont: faults in the world, and this segment of the $S A F$ has caused two of tl earthquakes in California in historic time, one being theA末857 Fort : geologist in California, I am compelled to contribute to the knowledc this major actim fajet ilme to depict the structure of the roadcut ar
its development in terms of regional faulting and locmaystrike-slip : educate people on the processes of strike-slip faults and the dynamic geology.

Experimental Methods and Procedure
The roadcut is difficult to approach in traffecmst ís encroachm required examine the structures along the roadside. I was required ts an orange vest, and a hard hat at all times when on or iontbe vicinit the permit was granted by the state (Palmodanien afyicenfactatlo meet with an inspector at the site location to verify that I was pror and cones, and was not obstructing traffic or doing anything illegal test I was able to gedlegfictbemationedled

I examined the strinctumesroad cuts that are exposed on both side "trench" and fit the structures in each wall together. I made a fielc of the roadcut, closely examining the complexly folded and faulted st major components of the structaphotroctmosedc to draw structural featu that I was not be able to climBhentoaddureclbisects a hill that I climk on both sides for a complete view and optimal position to obtain the

Structuradmenation of both sides of the "trenchd"etiesmemithessary continuity of the structures from one side Φ fobheined meatheamehes. of the fold axes, strike and dip of bedding, fault surfaces (where e: (where accessible). I plotted the measurements on a stereonet to est:
of the fold axis. To verify the continuity of the structures within t mirror imaged one of the cross-tslectatmerwaindss-section.

Project Challenges

The greatest challenge for the entire project was obtaining the along the roadcut. Obtaining a permit required persistence. Permits i night and shoucladefeully considerplawhéng a project that requires one. Permit applications should be submitted at least three months in advi problems. I was delayed for a month because of the lack of sufficient

A photo-mosaic requires a high quality camera with a lens that l distortion. I knew of the spherical distortion and thought that I has was mistaken.

The weather conditions must be considered when prepainiong a projє heatxhaustion one-day on the road cut even though I had prepared mys. situation with plenty of water and proper clothing.

Observations

The roadoatntains numerous faults (Table 1 and figure 1) with di orientations in complexly foldæod squybitans shale. After examining the sandstone beds closely in the road cut I found graded beds, sparse f : sequences in grain size and nonparallel tindeget serdisnserbeadilying. structures permitted me to determine stratigraphic tops of steep dipr rocks in the ro田decsiiltstineeitmaminated and interbedded with gypsum
throughout the entire road crith. tTion in orientation and the f appear tordeoldeich places

Fault	Strik	Orientation w/ respect to the	Features SAF	Conclusion
A	113°	0°, Parallel	Gauge zone	Subsidiary
B	113°	0°, Parallel		Subsidiary
C	115°	0°, Parallel	Folding on upper surf	asafosidiary
D	93°	$20^{\circ}-22$	Truncates synclinal s	.Risi.e dreeldss hear
E	105°	10°	Located within a fold	Accommodation fracture
F	115°	0°, Parallel	Cross-cuts a refolded	Stodudicli diary
G	110°	30-5, Parallel	Fault splay near surf	asadbsidiary
H	95°	20°		Riedel shear
I	86°	30°	Drag folding on hangi	Thrust fault

Fault A strikes approximatredlyalsi $3 a^{\circ}$ gouge zone one meter wide. Fa
 fault.

Fault C strikesnbll 583 so parallel to the SAF.

Fault strikes $\begin{aligned} & \text { abd } \\ & \text { is } \\ & \text { approximately } \\ & \text { 8rfent }\end{aligned}$ Laterally, it is planar to semi-planar in geome\#tyD モoandixes synclinal sandstone k with an apparent vertical displacement of $1-2 \mathrm{~m}$.
 located within a synclinal fold and is discontinuous vertically.

Fault $\mathbf{\$ t r i k e s}^{\circ}, 1$ lifs approximately par太AFeland thencates a refolde fold.

Fault G strikesnloll is oriented approximately par\&lf\&llto the SAF splay originates near its asmoflaldequitsense of displacement.

Fault H is planar, ${ }^{\circ}$ standes 95 briented approximmelther 0°

Fault sltrikes anfl is orientedonOthe SAF. bteddisnga plane surface thrust farmdtdispldursg folding on the "hanging waNb"tsmegnferftault I is complexly folded and convoluted siltstone and gypsiferous shale.

The orientatoifors rata in the fold limbs were plotted as poles to stereorweitthout separation into segments कffetheleoad the.girdle of poi so plotted yields an east-west fold axis. The mean oriesttinaitemof the by placing the poles on a great circle that wifemeanherbestaesommate was estimated to $\underline{\phi} \epsilon^{\circ} 1 \mathbb{1} A^{\circ}$ few degrees of axial rotation of the folds be cause a range of orientations of the foldndxis5Between 100°

Interpretations

Simple shear structures typically form en echelon arrangements i faults in relatively narrow zones. Numerous simple shear clay model ϵ produced en echelon shear and extension fractuliesi Oaporomxtraæt ekyis s30 of shortening anrolallast $4 \mathbb{E}^{\circ} 0$ the axis of shbrtheifiglds can be folded, truncated, and refolded to complepogecineqriesated. Five sets fractures form from simple shear model experiments asfiRliestertated in
shear fractures. 2) Folds. 3) Extension fractures. 4) Thrust faults. structures.

The fault zone at Palmdale may be interpreted as a strike-slip entire roadcut is sandwiched between two strike slip faults (figure: cumulative displacement of over 100 km and the Little Rock fault witl of displacement. Subsidiary planar faults are orießroted tprer SAAmately and are Riedel shear fractures or thrust faults. The folds ane orient the strike of the SAF and are simple shear fold structures.

Faults A, B, C, F, and G, are subsidiaries of the $S A F$ zone. The an area that encompasses the entire road cut and includes the Little faults, including the Little Rock fault are roughly parallel to the :

Figure 2) Riedel shear fractures 2) Folds 3) Extension fractures 4) Thrust f Superposition of all structures. (Sylvester, 1988)

Faults and Hare Riedelrshmade orientaed 2° tothe strike of the SAF. Fault I is a thrust faulta toreestred arod contains drag folds on t hanging wall segment.

Fault E is an accommodation fold fracture because it is discont: parallel with the fold axis, and its displacement may have been cont folding. It is also dissimilar to the SAF subsidiaries and Riedel sht

In conclusion, the fault zone is predominately composed of subs: strands from the SAF, scarce Riedel shears or thrust faults, and fols locally can be inferred to have had predominately right lateral stri] minor component of simple shear. It is unclear whether the SAF couplt Rock fault or the SAF alone were the source for the simple shear.

Log of Events

Week by week log of steps and procedures for Palmdale project by Lowell Kess

- July 28, 1998, a permit to encroach the shoulder of highway 14 was submit California Department of Transportation.
- Week of August $2-8$, reconnaissance of the road cut with my mentor.
- Week of August 9-14, preliminary cross-sectional drafts, structural analy for the photo-mosaic.
- Week of August 15-22, Intern Colloquium at USC, JPL, CalTech, and reading Sieh and Yehuda Ben-Zion.
- Week of August 23-29, Field mapping and sketching of western segment of t : road cut.
- Week of August 30-September 5, partial sketch of eastern segment of road outside temperature exldaulaitowpent half the week recuperating.
- Week of September 6-12, received permit to encroach on shoulder of highwa persistence. Set up cones and a sign and bookhmikemmemenipeosf along entire roadcut on eastern and western segment where possible.
- Week of September13-19, completionm@fpsinguandreketching of eastern segmen of road cut.
- Week of September 20-26, compilation of data and research of strike slip report and preparation of poster for annual conference on October 17, 199
- Week of September 27-October 5, completion of report, abstract, and poste

Lowell Kessel
Dr. Sylvester

References

1. Barrows, A. G., 1987, Road cut exposure of the San Andreas fault z Antelope Valley Freeway near Palmdale leagidadr nsicciety of America Centennial Field Guide-Cordilleran Section, p.211-212
2. Smith, D. P., 1976, Roadcut geology in the San Andreas fault zone: Geology, p. 98-104.
3. Sylvester, A. G., 1988, Strike-slip faults: Geological Society of v.100, p. 1666-1703.
4. Wallace, R. E., 1970, Earthquake recurrence interval on the San An Geological Society of America Bulletin, v. 81, p. 2875-2890.
5. Wallace, R. E., 1949, Structure of a portion of the San Andreas ri California: Geological Society of America Bulletin, v. 60, p. $7\{$
