
Developing STP for Windows and XML

Introduction

During my eleven-week internship as a SURE intern at the USGS, I was given a

few projects to work on; to develop a console version of STP for Windows, a GUI

version of STP for Windows, and to add a feature to STP allowing for users to

attain certain data in XML format.

STP 1.4 for Windows

Because there was a not version of the Seismogram Transfer Program (STP) for

Windows, I was instructed to develop just that. I created two versions of STP; a

console program that worked identical to the UNIX/Linux version of STP, and a

GUI version of STP, that was loosely based on the Internet based version of

STP. Coding went smooth for the Windows console version of STP. After

looking over the code for the UNIX/Linux version of STP, I figured out that I only

needed to change a few functions and add a few headers to make it work on the

Windows environment. In the UNIX/Linux version, data was being sent to and

received from the server via file transfers. However, that would not work on the

Windows environment. Therefore, it was necessary for me to use raw socket

functions to send and receive data from the server.

When I was done with the console program, it was now time to develop a GUI

version of STP. As a reference, I looked at the web-based version of STP that is

coded in Java and decided to model my GUI layout after that. Using the

Windows API, I was able to create the GUI for my application. Having never

coded a Win32 application, it seemed confusing to me at first. However, after a

lot of reading through the Internet, books, and the MSDN website, coding using

the Win32 API did not appear to be too difficult.

A few problems did arise when during the coding of the GUI version of STP.

Since I already had all of the client/server functions coded in the console

program, I added that into the GUI version, and that caused a problem.

Whenever a command was sent to the server, the program would stop

responding until it was done receiving data from the server. Obviously,

something needed to be done about this, so I used multithreading to fix that

problem. However, once I did that, other functions began to work in such a way

that I did not want them to, and I had to change how they functioned.

Nonetheless, after some debugging, I was able to fix those problems.

Below are Figures 1 and 2, which show how the UNIX/Linux version of STP is

comparable to the Windows version, and how the internet version is comparable

to the Windows GUI version.

Figure 1: Comparison between the UNIX/Linux and Windows versions of STP

How to Run STP for Windows

To attain a copy and run the console version of STP for Windows, perform the

following steps:

1. go to http://www.data.scec.org/ftp/programs/stp
2. left click on stp.exe
3. click on save file to disk
4. double click on stp.exe

You can enter in commands just as you would the UNIX/Linux version of STP.

Any data downloaded will be saved in the same directory you are running

stp.exe from. As an example, at the STP prompt, enter in the command:

 STP> PHASE –f northridge.txt –e 3144585.

This command will save a file (the -f command) called northridge.txt containing

phase information for the event (the -e command) 3144585, the event ID for the

6.7 Northridge event to your working directory.

Figure 2: Interfaces of the web and Windows client GUI versions of STP

To attain a copy and run the GUI version of STP for Windows, perform the

following procedures:

1. go to http://www.data.scec.org/ftp/programs/stp.
2. left click on stp_gui.exe.
3. click on save file to disk
4. double click on stp.exe

The GUI version will allow the user to select from entering in a Win, Trig, or

Phase command. As well as allowing the user to search for certain events while

in Trig or Phase modes. Again, any downloaded will be saved in the same

directory you are running stp_gui.exe.

Adding XML to STP
 After creating the console and GUI versions of STP for Windows, I was assigned

to add an option to allow for users to receive Event and Phase data from the

server in XML format. I first created an XML schema for the Phase and Event

commands, which is used to validate the XML document. I then coded the

parser for the Event and Phase commands so that when the user entered in a

Phase or Event command, the data would be stored in XML format.

The do_event.c file, which handled the Event commands, for the most part,

already had the XML Parser coded in it. I made a few minor changes to the

parser so that it would be valid against my Event schema. Since the Event

parser already coded, coding the Phase parser went smoothly. After coding the

parser it was time to see if the code would work and if it would be valid against

my schemas. To my delight, the XML files were indeed correct. Now it was time

to document my work and put it up on the SCEDC web page.

I created an Introductory page about STP and XML, with links to the

documentations and schemas for both the Event and Phase commands. Figure

3 below shows my schemas for the Phase and Event commands. For more

information on my project of adding XML to STP, go to

http://www.data.scec.org/xml.

Figure 3: XML Phase and Event Schemas

How to Receive Data in XML Format

To receive data in XML format you must enter in xml at the stp prompt. For

example:

 STP> XML

Now you can enter in a Phase or Event command as you normally would, and

the XML files should be saved to your working directory.

